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Two Chebyshev solvers are presented for the linear Helmholtz equation. The first algorithm 
is a 3-D direct spectral solver based on a diagonalization technique, whilst the second 
performs an iterative pseudospectral 2-D calculation with finite difference preconditioning. 
Both techniques handle general nonhomogeneous boundary conditions. Computing times and 
accuracies of the two methods are compared. 

1. INTRODUCTION 

This paper is concerned with two Chebyshev Helmholtz solvers. The first one is a 
direct spectral solver derived from the algorithm proposed by Haidvogel and Zang 
(hereafter referred to as HZ) [2], which has been extended to include the 3-D case 
and general nonhomogeneous linear boundary conditions. The second solver is an 
extension of the iterative method proposed by Orszag [5] to I-D and 2-D general 
Helmholtz resolution, employing Chebyshev schemes. 

Section 2 presents the direct solver for general nonhomogenous boundary 
conditions (Dirichlet, Neumann or Robbins). The algorithm performs a full 
diagonalization of the global system matrix or a partial diagonalization associated 
with the solution of quasi-tridiagonal systems. 

Section 3 describes the extension to the Chebyshev case of the analysis presented 
in [S] for the Fourier case and reports numerical results. 

Section 4 compares both algorithms from the point of view of computing time and 
accuracy. 

It is shown that for a Helmholtz equation with constant coefficients, the method 
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utilizing full diagonalization is as successful as the Haidvogel-Zang algorithm, while 
for more general elliptic operations, the pseudospectral scheme leads to spectral 
accuracy but with significant computing cost. 

2. DIRECT SPECTRAL SOLVER 

This section presents the 3-D fast spectral solver based on a diagonalization 
technique for general nonhomogeneous boundary conditions. For the sake of 
simplicity, we will restrict the presentation of basic concepts to the one-dimensional 
differential equation, 

u xx - au =f, x E I-1, +1], (1) 

where u,, denotes the second-order derivative of u with respect to x and a > 0. To 
solve Eq. (l), the following boundary conditions are imposed: 

a*u+P*u,=s*~ at x=&l. (2) 

Looking for the solution of (l)-(2) and using the Chebyshev approximation of U, 

the Tau projection method [l] leads to the linear system 

;p’ - au”, =fn, O<n<N-2, 

C (*lY [a, fP,n*]&=g,, 
II=0 

(3) 

(4) 

where jin are the Chebyshev modes of the right-hand side of (1) and Gr’ denote the 
coefficients of the second-order derivative (see (A.l)). 

The extension of the diagonalization technique proposed by Haidvogel and Zang 
[2] to the case of nonhomogeneous boundary conditions is based on the reduction of 
system (3)-(4) of order (N + 1) to a system of order (N - 1) by algebraic elimination 
of Eqs. (4). We refer the reader to Appendix I for details of the algebra. The new 
resulting system is (B, - a@ = D (A.5). 

The algorithm then proceeds to the calculation of the eigenvalues and eigenvectors 
of the B, matrix. Denoting by H, and d, the matrices formed by the eigenvectors 
and eigenvalues of B,, respectively, (A.5) is equivalent to 

H&4, - a1) H; ‘u’ = D. (5) 

This equation is solved directly, first for (H;‘Q in the eigenvectorspace, and then 
for c in the (N - 1) subspace (u”,, n = 0 ,..., N - 2}. The last two components 
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TABLE I 

(N4, (N - 1)“) Law of the Last (&, A,- ,) Eigenvalues 

k Dirichlet case Neumann case 

N -0.303 -0.474 E - 01 
N-2 -0.163 E-01 -0.823 E - 02 
N-4 -0.502 E - 02 -0.338 E - 02 
N-6 -0.242 E - 02 -0.182 E-02 
N-8 -0.142 E - 02 -0.115 E-02 

(u;V- i, u;V) are deduced, from (A.3), (A.4), by taking the boundary conditions into 
account. 

The diagonalization technique works successfully because all eigenvalues are 
distinct, real and negative (see Gottlieb and Lustman [3]). From numerical experi- 
ments, one observes that the smallest eigenvalues behave as in the Fourier case, 
provided the cutoff of the spectral series is large enough to allow a good represen- 
tation of the corresponding low-frequency Fourier eigenvectors. Above a value close 
to 2N/3, the Chebyshev eigenvalues deviate significantly from the eigenvalues given 
by the Fourier representation: starting from the last eigenvalue A,, the pairs 
(A,, A,-,) with k = N, N - 2 ,... show, respectively, an identical (N4, (N- 1)“) law, 
which is independent of N (see Table I). 

For the case of a Poisson’s equation (a = 0) with Neumann boundary conditions, 
the RHS of system (3)-(4) must verify the following compatibility condition, 

(6) 

n eYe” 
which is none other than the Tau representation of the Cauchy-Neumann condition 

I ’ f dx = u,(l) - Q-1). 
-1 

For 2-D or 3-D problems, the above procedure can be applied in a straightforward 
manner to provide a full or partially diagonalized algorithm. The 3-D version of (1) 
is 

u,, + u,, + u,, - au =f, &Y, z E L-1, +I], (7) 

with boundary conditions of type (4) in each spatial direction. The solution of (7) is 
then approximated by the Tau method based on the 3-D Chebyshev series 

(8) 
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The full diagonalization technique performs the following steps: 

(i) Preprocessing stage: computation of the 1-D B,, B,, B, matrices of order 
L - 1, M - 1, N - 1, respectively, and diagonalization of these matrices to produce 
the Hi, (ii eigenvector and eigenvalue matrices (i = x, y, z). In the (L - 1) (M - 1) 
(N- 1) space, the Hi and /ii matrices are proportional to the identity matrix in the 
other directions. The (L - 1) (M - 1) (N - 1) subsystem of (7) is then equivalent to 

H,&,H,(/I, + A, + A, - aI) H, ‘H,:‘H,‘u” = D. 

(ii) Computation of the modified source term D, applying (A.6), (A.9) in each 
spatial direction. 

(iii) Scanning each spatial direction in succession, one applies the 
corresponding Hi’ operator to the right-hand side to produce the source term of the 
full Helmholtz diagonal representation. 

(iv) The solution is recovered, first, in the (L - l)(M - l)(N - 1) subspace, by 
successive applications of the Hi operators, and, finally, for the last components, by 
appropriate use of the boundary conditions. 

In the partially diagonalized version of the algorithm, one must choose the 
direction in which matrix sustems are to be solved instead of using the 
diagonalization technique. The 3-D case is therefore solved by the same procedure as 
described in HZ, i.e., two diagonalizations are followed by the solution of matrix 
systems of quasi-tridiagonal type as noted by Gottlieb and Orszag [ 11. These systems 
of order N, say, are solved in O(8N) operations for Robbins boundary conditions. 
This operation count results essentially from the LU backsolving and the right-hand 
side calculation. 

Table II presents the comparison of asymptotic operation counts for both 
algorithms in 2-D and 3-D cases. 

TABLE II 

Asymptotic Operation Counts for the Direct Spectral Solvers (Preprocessing Is Not Taken into Account 
and Coupling Is Assumed between Parities, i.e., Robbins-Type Boundary Conditions) 

System size HZ algorithm” Full diagonalization 

CL Ml 2LM(4 + M) 2LM(L + M) 
(LKN) 2LMN(4 + M + N) 2LMN(L + M + N) 

’ The first direction (L) is solved and the others are diagonalized. 
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3. PSEUDOSPECTRAL ITERATIVE SOLVER 

The existence of highly developed packages for elliptic equations (Boisvert and 
Sweet [4]) within the finite difference (FD) context allows one to investigate the 
following interesting question: Is it possible to obtain spectral accuracy using an FD 
preconditioning? This question has been addressed by S. A. Orszag [5], who 
proposed an iterative scheme for linear and nonlinear equations. His theoretical 
analysis investigates the Fourier spectral schemes. In the present paper, the same kind 
of analysis is carried out for the Helmholtz equation within the Chebyshev spectral 
approximation. Let us recall the basic properties of the iterative scheme designed to 
solve Lu = 0, where L is a linear operator in this case. Let us call Lap the precon- 
ditioned FD operator built from centered differences at the Chebyshev collocation 
points. The correction 6~ (n) to some approximate solution 24(‘) at iteration n is 
obtained by 

&(“) = - Lap- ‘Lu(“), Pa> 
U(n+ 1) = u(“) + a &(“). Pb) 

An optimum value for the relaxation parameter a is given by aopt = 2/(M + m), 
where m and M are, respectively, the smallest and largest absolute eigenvalues of 
Lap-IL. Defining E(“) = u -a@), the ratio 1~c(“+‘)~l//le(“)~l = )I6u’“+“~~/~~6~~~‘~I is 
bounded by rapt = (M - m)/(M + m). The problem reduces to finding the values of m 
and M for the Chebyshev Helmholtz operator. 

In the case of d2/dx2, an analytical evaluation of m and M is presented in 
Appendix II. This calculation results in m = 1, M-+ n2/4 when the cutoff N of the 
Chebyshev series goes to infinity. For example, M = 2.4 for N = 32. For the 2-D 
Laplacian operator, the same results are obtained by numerical computation. For the 
Helmholtz operator, m remains 1 while M approaches the value of m as the 
Helmholtz parameter a (Eq. (1) or (7)) increases. 

From these results, one may conclude that the Fourier analysis of the operator 
Lap-’ L provides a useful (and simple) tool to analyse the convergence behaviour of 
the iterative system. On the basis of these considerations, the conclusions of Orszag’s 
analysis hold and throughout the iteration process it should be expected that (( s(16) (/ < 
1O-6 I/e(‘)]] for aopt N 4/7. 

In Orsag’s algorithm, the iterative procedure uses the relaxation parameter fixed at 
its aopt value, which is only asymptotically optimal. However, a better strategy can 
be achieved by considering that only a subset of a few relevant eigenvectors of the 
Lap-’ L operator is significant in the 116u(“) I] reduction process. The span of this 
subset widens as the iterations proceed and at convergence the subset covers the 
whole eigenvector basis. Let us now denote by m (n), M(“) the subset of relevant eigen- 
values at the nth iteration. Therefore, adjusting the relaxation parameter at each 
iteration to the subset (m’“‘, MC”)), an accelerated procedure can be built. 

As a conclusion of the above considerations, one can write the relation 
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and assuming that 1) &(“I j//j/ &(“-‘))J is a good estimate of ) 1 - aCn)MCn)l, then the 
next value of a results from 

a@ + ‘) = max ( 2 
aopt, 

lw”) + 1 1 * 

The initial guess for a will always be 01~‘) = 1. In Eq. (lo), m’“’ has been set equal to 
1 because, for elliptic equations, this choice does not noticeably influence the 
convergence rate of the iterative method. 

Let us note that the proposed iterative procedure can be implemented without any 
a priori knowledge of the bound it4 of Lap-i L. In particular, for Helmholtz 
operators, M lies in the range [ 1, 7r2/4] and its corresponding aopt is greater than 4/7. 
Nevertheless, the application of (10) with aopt = 417 leads to a good convergence of 
the scheme without providing the M value. 

How sensitive is the convergence rate to the nature of the boundary conditions? 
More specifically, does the presence of a first-order operator at the boundaries slow 
down the rate of convergence? To answer these questions, problem (1) was solved 
with Dirichlet or Neumann conditions, a * = 1, ,8* = 0 or a * = 0, ,0* = 1, respec- 
tively, in (2). The linear system for the correction 6~ is built up using centered FD. 
The right-hand side results from the spectral residue calculation for the PDE and the 
boundary conditions. 

No significantly different behaviours appeared and excellent convergence rates 
were observed, i.e., c(i6) ‘v 10-‘“~‘o’ Figure 1 shows the evolution of the maximum . 

FIG. 1. Maximum residue L,u, -f, for Eq. (1) solved by the pseudospectral iterative solver with 
Neumann boundary conditions. The Helmholtz parameter a is 10-4. The exact solution is u = sin 4nx + 
CDS 472~. In Figs. 1 to 3 the wedge indicates the spectral accuracy level achievable with a given spectral 
cutoff on the known analytical solution. 
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FIG. 2. Residue at x = -1 of the Neumann boundary condition from the I-D Helmholtz 
pseudospectral iterative solver. 

residue LNuN -f, of the PDE with respect to the iteration number for various 
Chebyshev cutoff values. Figure 2 shows the evolution of the residue of the left 
Neumann boundary condition. For both cases, the improvement over the FD 
prediction is quite striking and the spectral accuracy defined as the maximum residue 
for the analytical solution with a given spectral cutoff is obtained after a finite 
number of iterations. 

FIG. 3. Maximum residue for the 2-D pseudospectral iterative solver. The exact solution is 
sin 47~~ sin 4ny. 
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TABLE III 

Asymptotic Operation Counts Per Iteration for the Iterative Pseudospectral Solvers 

System size FD solver [7] Discrete Chebyshev Transforms (91 

CL w 3LM Log,M 2LM Lo&M) 
(L M, N) 3LMN Log,M Log, N 2LMN Log(LMN) 

The same algorithm was applied to a 2-D version of the Helmholtz equation. The 
FD problem was solved by the BLKTRI routine from FISHPACK [6]. Figure 3 
presents the evolution of the maximum spectral residue of the PDE for a 2-D 
problem. The same behaviour as in the 1-D case is observed. 

The asymptotic operation count per iteration is given in Table III for 2-D and 3-D 
cases with the assumption that the FD solver performs cyclic reduction 171. 

4. COMPARATIVE EVALUATION OF BOTH ALGORITHMS 

In Table IV, the execution times required by the direct spectral solvers are in good 
agreement with the asymptotic operation counts given in Table II. As expected, the 
full diagonalization solver is more expensive than the HZ algorithm; the difference 
between the two algorithms is proportionally smaller in the 3-D case than in the 2-D 
one. Nevertheless, the straightforward implementation of the fully vectorizable 
algorithm leads one to consider the HZ solver as well suited for large aspect ratio 
situations, where one cutoff value is much larger than the others. 

TABLE IV 

Execution Time in Seconds on a 3033 IBM Computer 

System 
size 

172 0.017 
252 0.04 
332 0.083 
412 0.15 
491 0.23 

93 0.03” 
173 0.35” 
25’ 1.51” 
333 4.35” 

HZ algorithm 
Full diagonalization 

solver 

Ten iterations of 
pseudospectral solver 

Total FD solver DCT 

0.023 0.74 0.4 0.2 
0.067 2.05 1.25 0.6 
0.14 3.5 2.4 0.9 
0.29” 6.1 4.4 1.7 
0.47” 
0.05 
0.53 
2.27 
6.52 

a These times have been estimated from the asymptotic operation counts given in Table II. 
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FIG. 4. Round-off errors for a 1-D diagonalization solver with Dirichlet boundary condition. 

The computing time of the pseudospectral iterative solver is divided into two parts: 
70% of the computation time is spent by the FD solver while the remaining 30% 
results from the Discrete Chebyshev Transforms 191. 

Despite the fact that the pseudospectral approach is more expensive in terms of 
computer time compared to the fast direct solver for the Helmholtz equation, its 
range of applications is much wider. The pseudospectral algorithm is valid for general 
elliptic boundary value problems with linear or nonlinear conditions. The limitations 
(if any) arise from the existing facilities to solve the preconditioned problem and their 
ability to work with a Chebyshev collocation grid. 

The spectral accuracy, i.e., the maximum residue L,u, -f, one would obtain from 
the known solution described with, say, N + 1 Chebyshev polynomials, will be 
achieved by the pseudospectral iterative scheme, whatever the solution smoothness or 
the spectral cutoff. Of course these two parameters do monitor the spectral accuracy 
level. Also, the number of iterations needed to achieve spectral accuracy will depend 
on the spatial structure of the solution field. The more complicated it is, the more 
iterations will be necessary. Nevertheless, the worst rate of convergence would still be 
that obtained with Orszag’s relaxation factor. On the other hand the direct spectral 
solver is subject to some inaccuracy as already mentioned by HZ 121 due to the 
preprocessing calculation of eigenvalues and eigenvectors. Figure 4 displays the 
round-off error evolution with respect to the cutoff N for the 1-D problem (1) with 
Dirichlet conditions. Here the preprocessing is calculated using 64-bit words. When 
N goes from 8 to 64, almost five significant digits are lost. For a reasonable cost of 
preprocessing, this kind of numerical error prohibits the use of the direct solver for 
large N values. 

GENERAL CONCLUSIONS 

Up to N = 50 (say), the Helmholtz equation with linear boundary conditions can 
be solved quite efficiently by the full diagonalization technique which is the easiest 
algorithm to implement and the best one for vectorization. However, if one of the 
cutoff values is greater than the others, the partial diagonalization in the directions 
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corresponding to the low cutoffs constitutes the best algorithmic choice. For more 
general elliptic operators, the pseudospectral scheme appears to be well suited 
although the iterative character of the algorithm leads to time-consuming procedures. 

APPENDIX I 

Referring to the Poisson 1-D problem presented in Section 2, we are faced with the 
following linear system (Eqs. (3)-(4)): 

- ;; 1 

c II p=z* 
p(p* - r?) tin -au’, =f,, O<n<N-2, (A.11 

p+n even 
N 

y (51)” [a, *P*n’] lin=g*, G4.2) 
n=o 

where co = 2 and ci = 1, Vi > 0. The elimination of u;V, U-N-i between (A.l) and (A.2) 
proceeds as follows. First, let us evaluate u;V and u;V-i from the two equations (A.2). 
We obtain, with the following auxiliary quantities: 

A-@)=a- -p-n*, 
A+(n)=a+ +P+n*, 

Den=-A+(N)A-(N- I)-L(N)A+(N- I), 

&-I = 
L 

It- 2 

g-A+(N)-g+&(N)- x (A+(N)(-l)“L(n) 
II-0 

-A-(N)A+(n))C, 64.3) 

N-2 

+ (-l)“A-(n)A+(N- l))u’, Den. (A-4) 

Substituting (A.3)--(A.4) into (A.l), the (N - l)* system can be written as 

(B,-aal)u”=D, (A.9 

where I is the unit matrix of order N - 1. The B, matrix translates, in the Chebyshev 
space, the a2/ax2 operator together with the general homogeneous linear boundary 
conditions (LHS of (A.2)). The B, and D matrices are formed from the elements: 
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l N(N;e;n*) (g+A-(N- l)+g-A+(N- I)), O<n,<N-2. (A.6) 

For every p such that 0 <p < n + 1 and for odd values of p such that n + 3 <p ,< 
N - 2, we have 

B =’ NW--*) 
nP 

C!l Den 
(L(N- ~>A+(P)+(--~)~A_(P)A+(N- 1)). (A.71 

For every even p such that n + 2 <p < N - 2 

(A.81 

(ii) Odd n 

B,, = bp(p2 - n2) + (A.7). 
” 

D,=f+ ’ (:inl) ((N- 1)’ -n2)(g-A+(N)-g+L(N)). (A.9) 
n 

ForeverypsuchthatO<p<n+l andevenpsuchthatn+3~p~N-2, 

B - ’ (N- ‘) 
nP 

cn 
Den ((N- II2 -n2)(A+(N)(-1)PA-(p)-A-(N)A+(P)). (A.101 

Foreveryoddpsuchthatnt2<p<N-3 

B,, = I p(p2 - n’) + (A. 10). 
n 

(A.1 1) 

APPENDIX II 

We wish to evaluate the lowest and largest absolute eigenvalues of Lap-’ L, where 
L is the Chebyshev representation of a’/&‘, while Lap is the centered finite 
difference approximation based on the Chebyshev collocation points 

xi=cosei, 19~ = ix/N, i = l,..., N - 1. 

For that purpose, let us show that Lap -’ L has a triangular form in the Chebyshev 
coefficient space. 
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(A.12) 
n=o 

Lu,(x,) = 5 zyTn(Xi), (A.13) 
tl=O 

Lap uN(xi) = 9 u”p’T,(xJ, (A. 14) 
?I=0 

the GI;?’ are well known (see [ 11, for example), while zi(ni’ will result from the present 
development. 

The application of the standard 3-point finite difference to T,,(xi), 

Lap[T (x,)j = Tn(xi-l) + Tn(xi) + Tn(xi+ 1) 
n I 

ai bi ci ’ 
(A.15) 

leads to the calculation of a,, bi, ci, which are the coefficients corresponding to the 
nonuniform Chebyshev collocation grid, namely, 

ai=4sin2 & sin (Oi+&) SiIlBiCOS &, 

bi=2sin2 5 sin iSi+&) sin (Bi-&), 

ri=4sin2&sin(8,-$-) SiIlBiCOS-&. 

Using Chebyshev classical formulae (see Rivlin [8]), it is easy to show that 

4 sin n 5 

sin3 71 cos 71 
2N 2N 

I(n-2)/21 

c 
p=o 

(A.16) 

sin(n - 1 -p) 6 sin@ + 1) -$ 

C n-2-2p 

x Tn-2-2p(xi)7 (A.17) 

where [ ] denotes the integral part of the quantity. 
Combining Eqs. (A. 12), (A. 17), one obtains (A. 14) where the z.Zp’ coefficients are 

$2) = L n 
C” p==c+2 

4sinpGsin(T) &sin(yJ &.GP. (A18) 

71 ?t 
p+neven sin3 2N cos 2N 

For fixed p and n, the coefficients appearing in (A.18) when N-1 03 approach 
4P((P + nM(P - nm i.e., the coefficients of the zi’,“. Following the well-known 
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tridiagonal relation between U;, and Cy’, it is easy to derive a similar relation between 
zi, and ii(,2’. 

27” = a,zz~~* +p,u-f’ + yJ&, n > 2, (A.19) 

where 
sin’ 71 7-c 

2~ 
. 

=Os -5 * cn-2 
a, = 

’ 
4 . sin(n - 1) 

n . 71 
2N . sm n 2~ 

sin’ 
n 

~20s’ 
7t 

- 2N. - 2N 

8, = 
2 . sin(n + 1) & . sin(n - 1) &’ 

7c n 
sin’ 2N. cos 2~ 

Yn = 
4.sin(n+l)&.sinn& 

Thus, combining (A. 13) and (A. 19), we finally obtain 

(A.20) 

(A.21) 

where d is an upper triangular matrix, defined as 

n(n - 1) sin’ 2N 2.L cos -5 
n 71 

2N sin’ 2~ cos 2~ 
qnp ip = c, + 

sin(n - 1) -? sin g 
n 

2N s1n n 2N 

n-1 n+l 
X - 

I 
i pq n > 2. (A.22) 

sin(n - 1) -& sin(n + 1) & JJ=~+’ p+neven 

By inspection of (A.22), one obtains the N - 1 eigenvalues: 

n(n - 1) sin2 -If- cos -5 
2N 2N 

n . 72 ‘ 
sin n 2~ . sm(n - 1) 2~ 

2<n<N. 

This set of eigenvalues is obviously bounded by 1 and 7~~14. 

581/55/l-9 
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